AskDefine | Define postsynaptic

User Contributed Dictionary



post- + synaptic


  1. in a synapse, of or pertaining to the neuron that bears receptors for neurotransmitter released into the synaptic cleft by the presynaptic neuron


Extensive Definition

Chemical synapses, are specialized junctions through which neurons signal to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form interconnected circuits within the central nervous system. They are thus crucial to the biological computations that underlie perception and thought. They provide the means through which the nervous system connects to and controls the other systems of the body, for example the specialized synapse between a motor neuron and a muscle cell is called a neuromuscular junction.
Young children have about 1016 synapses (10 quadrillion). This number declines with age, stabilizing by adulthood. Estimates for adults vary from 1015 to 5 × 1015 (1-5 quadrillion) synapses.
The word "synapse" comes from "synaptein", which Sir Charles Scott Sherrington and colleagues coined from the Greek "syn-" ("together") and "haptein" ("to clasp"). Chemical synapses are not the only type of biological synapse: electrical and immunological synapses exist as well. Without a qualifier, however, "synapse" commonly refers to a chemical synapse.


Chemical synapses pass information directionally from a presynaptic cell to a postsynaptic cell and are therefore asymmetric in structure and function. The presynaptic terminal, or synaptic bouton, is a specialized area within the axon of the presynaptic cell that contains neurotransmitters enclosed in small membrane bound spheres called synaptic vesicles. Synaptic vesicles are docked at the presynaptic plasma membrane at regions called active zones (AZ).
Immediately opposite is a region of the postsynaptic cell containing neurotransmitter receptors; for synapses between two neurons the post synaptic region may be found on the dendrites or cell body. Immediately behind the postsynaptic membrane is an elaborate complex of interlinked proteins called the postsynaptic density (PSD).
Proteins in the PSD are involved in anchoring and trafficking neurotransmitter receptors and modulating the activity of these receptors. The receptors and PSDs are often found in specialized protrusions from the main dendritic shaft called dendritic spines.
Between the pre and postsynaptic cells is a gap about 20nm wide called the synaptic cleft. The small volume of the cleft allows neurotransmitter concentration to be raised and lowered rapidly. The membranes of the two adjacent cells are held together by cell adhesion proteins.

Signaling across chemical synapses

Neurotransmitter release

The release of a neurotransmitter is triggered by the arrival of a nerve impulse (or action potential) and occurs through an unusually rapid process of cellular secretion, also known as exocytosis: Within the presynaptic nerve terminal, vesicles containing neurotransmitter sit "docked" and ready at the synaptic membrane. The arriving action potential produces an influx of calcium ions through voltage-dependent, calcium-selective ion channels at the down stroke of the action potential (tail current). Calcium ions then trigger a biochemical cascade which results in vesicles fusing with the presynaptic membrane and releasing their contents to the synaptic cleft within 180µsec of calcium entry. This effect is utilized with clonidine to perform inhibitory effects on the SNS.

Heterotropic modulation

Heterotropic modulation is a modulation of presynaptic terminals of nearby neurons. Again, the modulation can include size, number and replenishment rate of vesicles.
One example are again neurons of the sympathetic nervous system, which release noradrenaline, which, in addition, generate inhibitory effect on presynaptic terminals of neurons of the parasympathetic nervous system. On the other hand, a presynaptic neuron releasing an inhibitory neurotransmitter such as GABA can cause inhibitory postsynaptic potential in the post-synaptic neuron, decreasing its excitability and therefore decreasing the neuron's likelihood of firing an action potential. In this way, the output of a neuron may depend on the input of many others, each of which may have a different degree of influence, depending on the strength of its synapse with that neuron. John Carew Eccles performed some of the important early experiments on synaptic integration, for which he received the Nobel Prize for Physiology or Medicine in 1963. Complex input/output relationships form the basis of transistor-based computations in computers, and are thought to figure similarly in neural circuits.

Synaptic strength

The strength of a synapse is defined by the change in transmembrane potential resulting from activation of the postsynaptic neurotransmitter receptors. This change in voltage is known as a postsynaptic potential, and is a direct result of ionic currents flowing through the postsynaptic ion channels. Changes in synaptic strength can be short–term and without permanent structural changes in the neurons themselves, lasting seconds to minutes — or long-term (long-term potentiation, or LTP), in which repeated or continuous synaptic activation can result in second messenger molecules initiating protein synthesis, resulting in alteration of the structure of the synapse itself. Learning and memory are believed to result from long-term changes in synaptic strength, via a mechanism known as synaptic plasticity.

Relationship to electrical synapses

An electrical synapse is a mechanical and electrically conductive link between two abutting neurons that is formed at a narrow gap between the pre- and postsynaptic cells known as a gap junction. At gap junctions, cells approach within about 3.5 nm of each other, rather than the 20 to 40 nm distance that separates cells at chemical synapses. As opposed to chemical synapses, the postsynaptic potential in electrical synapses is not caused by the opening of ion channels by chemical transmitters, but by direct electrical coupling between both neurons. Electrical synapses are therefore faster and more reliable than chemical synapses. Electrical synapses are found throughout the nervous system, yet are less common than chemical synapses.



  • Llinas R. Sugimori M. and Simon S.M. (1982) PNAS 79:2415-2419
  • Neuroscience: Exploring the Brain
  • Cell and Molecular Biology: concepts and experiments .
  • From Neuron to Brain

External links

postsynaptic in Arabic: مشبك عصبي
postsynaptic in Indonesian: Sinapsis
postsynaptic in Czech: Synapse
postsynaptic in Danish: Synapse
postsynaptic in German: Synapse
postsynaptic in Estonian: Sünaps
postsynaptic in Spanish: Sinapsis
postsynaptic in Persian: سیناپس
postsynaptic in French: Synapse et transmission synaptique
postsynaptic in Croatian: Sinapsa
postsynaptic in Icelandic: Taugamót
postsynaptic in Italian: Sinapsi
postsynaptic in Hebrew: סינפסה
postsynaptic in Hungarian: Szinapszis
postsynaptic in Macedonian: Синапса
postsynaptic in Dutch: Synaps
postsynaptic in Japanese: シナプス
postsynaptic in Norwegian: Synapse
postsynaptic in Polish: Synapsa
postsynaptic in Portuguese: Sinapse (neurónio)
postsynaptic in Romanian: Sinapsă
postsynaptic in Russian: Химический синапс
postsynaptic in Slovenian: Kemična sinapsa
postsynaptic in Serbian: Синапсе
postsynaptic in Finnish: Synapsi
postsynaptic in Swedish: Synaps
postsynaptic in Thai: ไซแนปส์
postsynaptic in Ukrainian: Хімічний синапс
postsynaptic in Chinese: 突触
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1